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Behavior of Horizontally Curved I-Girders during Lifting
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Abstract: Several stages of performance need to be considered during the design of curved I-girders, including both the construction stage and
the in-service conditions. Girder stability during the early stages of construction can be difficult to assess because the girders, at times, have little
or no bracing present. One stage when there is no bracing present occurs when the girders are picked up from the ground or transport trucks by
cranes and lifted into place. To better understand girder response during this critical stage, field studies were conducted on horizontally curved I-
girders to measure rotations and stresses during the lifting process. This paper provides details of a semianalytical solution to predict the buck-
ling and deformational responses of straight and curved girder segments during lifting. The deformations can be compared with rotational limits
that were established to minimize problems with making connections to previously erected girder segments. The total rotational deformations of
a horizontally curved girder result from two distinct components: (1) rigid-body rotation and (2) rotation caused by the girder cross-sectional
twist owing to torsion from the girder’s self-weight. A spreadsheet design tool, UT Lift, was developed to provide critical information for
evaluating the rotational behavior of a horizontally curved I-girder during lifting and to estimate its lateral-torsional buckling capacity. An
example of UT Lift’s capabilities is presented along with background information on its development. Recommendations are given for safely
lifting and erecting horizontally curved steel I-girders. DOI: 10.1061/(ASCE)ST.1943-541X.0000674. © 2013 American Society of Civil

Engineers.
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Introduction

The design of curved I-girders requires an evaluation of the girder
response at several potentially critical stages during construction
and while in service. Girder stability during the early stages of
construction can be difficult to assess because little or no bracing
may be present. For example, generally no bracing is provided when
a single girder segment is picked up from the ground or transport
trucks by cranes and lifted into place. The stability of a steel I-girder
is primarily a function of the geometry of the girder segment and the
location of the lifting points. The sophistication and method of
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analysis performed by an erection engineer to locate girder lift points
varies widely among contractors. Due to uncertainties in girder
stability, as well as the wide range of analysis methods used to check
erection sequencing, the Texas Department of Transportation
(TxDOT) funded a research project to investigate the behavior of
straight and curved girder systems throughout construction. Pre-
ferred practices by TxDOT (2007) employ recommended girder
proportions that are twice as large as the minimum specified values
in AASHTO (2010). One of the goals of the investigation was the
development of recommendations for girder proportions that allow
for safe and economical construction. In addition, the study focused
on the creation of guidelines for the evaluation of girder stability
during early construction stages. The research included field moni-
toring, parametric finite-element analyses, and the development of
user-friendly finite-element software to serve as a tool for designers
and erectors. While this research project was specifically focused on
bridge girders, the results presented in this paper are applicable to
a variety of girder erection scenarios encountered in practice. For
example, there are a number of applications in the building industry
that may necessitate horizontally curved girders. One such appli-
cation may be curved spandrel girders that are required based on
architectural features. Another likely application can occur in sta-
dium roofing systems that often incorporate circular compression
rings composed of several curved beams.

Field studies were conducted to measure the rotation and stresses
of curved I-girders throughout the erection process. The collected
data provide valuable information for understanding the funda-
mental behavior of girders during erection and further provide val-
idation of three-dimensional (3D) finite-element models used to
conduct parametric investigations that extend the range of possible
system geometries. This paper includes details of a semianalytical
solution to predict the behavior of girder segments during lift-
ing, allowing engineers and erectors the ability to evaluate the
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vulnerability of the lifted segment to construction issues such as
excess rotation, cross-sectional yielding, and girder buckling. Based
on feedback from a nationwide survey of contractors, inspectors,
and engineers that specialize in curved steel I-girder systems, girder
rotation during lifting was found to be important for ensuring proper
connection fit-up of air splices (Farris 2008). The total rotational
deformations of a curved I-girder can be divided into two distinct
components: (1) rigid-body rotation and (2) torsional deformations
of the girder cross section caused by the girder’s self-weight acting
eccentrically to the lifting points. A spreadsheet design tool, UT Lift,
was developed to provide critical information for evaluating the
rotational behavior of a girder segment during lifting and for esti-
mating its lateral-torsional buckling capacity. The program is
available for free from the University of Texas at Austin Ferguson
Structural Engineering Laboratory website (http://fsel.engr.utexas.
edu/software/). In this paper, background information on the de-
velopment of the UT Lift program is provided, along with an ex-
ample demonstrating the program features and capabilities. Based
on the findings from this research, recommendations are made for
safely lifting and erecting horizontally curved steel I-girders.

Background

The behavior of curved girder systems can be difficult to assess
because of the large torsional moments that result from the geometry
of the girders. The curved geometry creates numerous challenges for
engineers and contractors, including girder transportation, staging,
lifting, and the prediction of stresses. Although there are a few field
studies on the behavior of curved I-girders during construction (Beal
and Kissane 1971a, b,1972; Galambos et al. 2000; and Linzell et al.
2004), the authors are not aware of any studies on the behavior of the
girders during erection when no bracing is present. The behavior
during lifting is a stage of response that is not well understood from
the perspectives of stability and deformation. Davidson (1996)
modeled curved I-girders using finite-element models and de-
termined critical lift points for prismatic girders, noting that ex-
cessive deformations and rotations can be problematic during lifting.
Mast (1989) suggested a set of equations to determine the factor of
safety for lifting long precast concrete beams. Mast’s equations
apply to prismatic girders with some initial imperfection, and they
include a factor for lateral stiffness and for initial rigid-body rotation
(roll angle) of the beam being analyzed.

The field tests that were performed as part of the study discussed
in this paper were conducted on a curved steel I-girder during lifting
at the Hirschfeld Steel Fabrication Plant in San Angelo, Texas, as
reported by Stith et al. (2012) and Schuh (2008). The results of the
field tests confirmed that curved steel I-girders during lifting are
subject to both rigid-body rotations and cross-sectional twist. Ad-
ditionally, a significant finding from the collected test data is that the
warping stresses can be of the same order of magnitude as the strong-
axis bending stresses. Thus analyses of curved steel I-girders during
lifting should accurately account for the stresses and deformations
that result during this critical stage of performance.

Lifting of Curved I-Girders

Three-Dimensional Parametric Study

Data gathered during the field measurements provided valuable
information for validating the modeling techniques and assumptions
used to analyze curved I-girders during lifting. Because of the lim-
ited girder support that exists during lifting, proper modeling is
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paramount to obtaining a good understanding of behavior. For this
research, parametric analyses were conducted using a 3D finite-
element model developed in ANSYS. The model employed eight-
noded shell elements for the girder flanges, web, and stiffeners.
Fig. 1 shows the beam clamp and associated hardware on the crane
used to lift the girders. The lifting hardware was modeled using truss
elements positioned along a line of action between the lift points and
the clamp support mechanism. A flexible lateral spring was attached
to the bottom flange of the girders to properly restrain the model and
to prevent rotation about the lift points. Inclusion of the spring in the
model was necessary to account for the frictional forces in the lifting
apparatus. The spring stiffness used in the model was 0.05 k/in.
(87.6 N/mm) and was calibrated from the rotational measurements
obtained from the field test. In addition to ensuring equilibrium of the
girder segment, the spring also served the purpose of providing some
resistance to the girders to aide in computational convergence. Other
solutions to this numerical problem exist, such as including a rota-
tional spring at the lift clamp support. However, the chosen method
provided an efficient solution, allowing the selection of a spring
constant that could be readily specified using data collected during
the field studies.

Schuh (2008) and Farris (2008) showed that the stability of girder
segments during lifting is significantly affected by the boundary
conditions of the girders. Fig. 2 is a schematic of the girder system
that was modeled by Schuh and Farris. The figure shows the ele-
vation of the girder in which the lift-point location was varied from
the end of the girder by a distance a. For a straight prismatic girder of
length L, the lateral torsional buckling capacity can be maximized by
lifting the girder symmetrically at a distance a = 0.238L from the
ends. For curved girder segments, however, it is also important to
consider the deformational behavior of the girder. For curved
prismatic segments, the girder twist from rigid-body rotation can
be minimized if the girder is lifted symmetrically at a distance of
a=0.211L from the ends. Eigenvalue buckling analyses were
performed to investigate the stability of prismatic girders (Schuh
2008) as well as nonprismatic girders (Farris 2008) during lifting.
Moment gradient factors (Cp) were developed to account for the
variation in stability as a function of the lift locations, but it was
observed that the radius of curvature did not significantly affect the

Fig. 1.Lifting of a curved I-girder with a spreader beam and lift clamps

LLIFT

L

Fig. 2. Girder lifting schematic
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Fig. 3. Nonlinear analysis of transverse displacement versus multiple
of self-weight: R = 152.4 m (500 ft)

predicted buckling capacity with an eigenvalue buckling analysis.
Implicit in linear eigenvalue analyses is the assumption that dis-
placements prior to buckling remain infinitesimal. This assumption
is not valid for cases in which significant displacements occur prior
to buckling, such as the case for highly curved girders. To model
structural behavior properly under these conditions, a large-
displacement nonlinear analysis must be performed. For horizon-
tally curved I-girders, the curvature is similar to a large initial
imperfection that results in significant deflection from the applied
loading. This nonlinearity typically prevents the girder from reaching
the predicted linearized eigenvalue buckling capacity.

Using the ANSYS analysis model (ANSYS) to study behavior for
various girder geometries and lifting locations demonstrated that two
limit states were critical: strength and serviceability. The strength
limits should include buckling considerations in addition to stress
limits. The stress limits should consider strong- and weak-axis
bending stresses as well as warping stresses. For service levels of
applied loading, a stress limit of 50% of F, during construction was
deemed to be reasonable in this study because such a limit usually will
avoid problems with yielding from the combination of applied stresses
and the initial residual stresses imposed during fabrication. The
serviceability limits during erection should consider end rotation at the
girder splice, and a limiting value of 1.5° is recommended. This
serviceability limit was established from a nationwide survey con-
ducted by Farris (2008). The serviceability limit state should account
for the rigid-body rotation and the cross-sectional distortion resulting
from torsion on the curved girder due to its self-weight.

The effect of horizontal curvature on the behavior of girders
during lifting can be understood by comparing the deformational
response of girders with different geometries. A girder with a radius
of curvature R equal to 152.4 m (500 ft) was deemed highly curved in
this study, whereas a radius of curvature greater than or equal to
2,438.4m (8,000 ft) was deemed relatively straight. The variations in
lateral displacement of the two flanges for girders with horizontal
curvature at these two extremes are shown in Figs. 3 and 4. The
lifting points for the girders were positioned at a = 0.2L from the
ends, which is close to the optimal locations to maximize strength
(0.238L) and minimize rotation (0.211L) mentioned previously. The
lateral flange displacements are graphed on the vertical axis, and the
horizontal axis represents multiples of the girder self-weight. For
lifting of girders, the only load acting is the girder self-weight. The
deformations were determined from a large displacement analysis.
In addition to the flange displacements, three limits are shown,
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Fig. 4. Nonlinear analysis of transverse displacement versus multiple
of self-weight: R =2,438.4 m (8,000 ft)

representing serviceability (rotational limit of 1.5°) and strength
limits [yield limit of 345 kPa (50 ksi) and the buckling load predicted
from an eigenvalue buckling analysis]. The eigenvalue represents
a multiplier to the applied load (i.e., the girder self-weight), which is
the main reason the abscissa was selected as the multiple of the self-
weight. The curved girder results shown in Fig. 3 indicate that the
lines representing the top and bottom flange displacements bifurcate
immediately. Physically, this indicates that the girder experiences
significant twisting as soon as load is applied and continues to twist
as the load is increased. The displacement at the eigenvalue buckling
load level is in excess of 508 mm (20 in.). The straight girder results
shown in Fig. 4 with an initial imperfection of ~L/500 (L is the total
length of the girder) remain relatively straight until they approach the
eigenvalue buckling load. Large deformations occur near the ei-
genvalue limit, which indicates that the critical-load prediction is
a reasonable approximation for the buckling capacity of straight
girders. Thus, when the load on the straight girder nears the ei-
genvalue limit, the system becomes unstable, with large torsional
deformations synonymous with the lateral-torsional buckling mode,
which signifies failure. In both cases, and what is expected to be the
most likely situation in practice, the rotational limit state controls the
behavior during the lifting process, but the limit is reached at a much
lower load level than the eigenvalue buckling load for the highly
curved girder. A full explanation of the nonlinear lift study is pre-
sented by Petruzzi (2010).

Based on these observations, it is clear that a detailed under-
standing of the behavior of curved girders during lifting relies on
accurate predictions of the rotational deformations that occur. As
mentioned previously and verified with the data collected during the
girder lift tests, girder rotations consist of two distinct components:
(1) rigid-body rotation and (2) cross-sectional twist. The rigid-body
rotation calculated in the next section is applicable to any circularly
curved beam, prismatic or nonprismatic. The cross-sectional twist
calculations are generally accurate for values of rigid-body rotation
that can be reasonably expected to occur in practice.

Rotational Deformation of Curved I-Girders

Rigid-Body Rotation

Mast (1989) provided an equation to calculate the roll angle during
lifting for a prestressed concrete I-girder with an initial imperfection.
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While concrete I-girders are often prismatic, most steel I-girders are
not. Because the basic concepts are the same, however, Mast’s solution
can be extended to the case of steel I-girders by recognizing that there
is a line of support defined by a line through the lifting apparatus. The
rigid-body rotation of a curved girder is caused by the center of gravity
of the girder not being located collinearly with the line defined by the
lifting locations. This eccentricity results in a system that has stored
potential energy that will rotate the girder until the center of gravity is
directly below the line of support, thereby minimizing the potential
energy of the system. A schematic of this process is shown in Fig. 5.
Calculating the location of the center of gravity for a curved I-girder

RS [sin(6; — 6) = sin(6-1 —0)] + (R + a%) S Wag cos (6~ )

becomes a critical step in determining the lifting behavior. The fol-
lowing equations can be used to determine the location of the center of
gravity of a curved nonprismatic girder with (potentially) multiple
cross sections and cross fames:

RS"W; (0% — 62
_ i (2’ ) + >0 Wa; Ox;
0 = : 1
RZ?Wi(ei —9,'71) + ZJ’."WXJ‘ ( )
L = 0R (2)
3)

RZ?W,’(G,’ — 0,'71) + Z]mW)Cj

where 6 = angular distance to the center of gravity of the girder, R =
radius of curvature, W; = weight per unit length of cross-section i,
0; = internal angle from the beginning of the girder to the end of
section i, Wx; = weight of cross frame j, n = total number of different
cross sections, m = total number of cross frames, 6x; = internal
angle from the beginning of the girder to cross frame j, L = length
along the girder to the center of gravity, D = radial distance to the
center of gravity, s = spacing of the girder (assumed to be the width
of the cross frame), and o« = — 1,0, orl depending on the cross-
frame location.

The eccentricity of the center of gravity (CG) from the line of
support e and the distance of the center of gravity below the line of
support provide the necessary information to calculate the rotational
angle, as depicted in Fig. 5 and given in Eq. (4). In this equation,
Hc. is the weighted average for all cross-sectional Hc g, values
along the length of the girder. As expected, the rigid-body rotation
B1igia 1s not a function of the cross-sectional stiffness of the girder but
rather only a function of the girder and lifting geometry

Origiq = tan ' [ ———¢ 4
rieid <H + 1+ HC.G.) “)

where H = distance from the line of support to the top of the girder,
and tr = top-flange thickness.

A result of this calculation is that there are an infinite number of
lines that pass through the center of gravity and represent lines of
support that prevent girder rotation. However, there is a unique so-
lution to the problem if an additional constraint is applied. If a girder

X_'_ I

A-A

Fig. 5. Schematic of girder rotation and center of gravity location

has lift locations equidistant (along a straight line) from the center of
gravity, the reaction on each lift clamp will be equal, which will
prevent girder rotation. The constraint of equal reactions is necessary
in the most frequently used lifting systems shown in Fig. 1, where
equal reactions are required for equilibrium of the spreader beam with
a single crane. Therefore, by enforcing the constraint that the lifting
forces at each lift point be equal, it is possible to compute these lifting
locations as shown in Fig. 6 and indicated in the following equations:

0 = cosl(%) (5)

OLig1 = 60—6 (6)
Liiti 1 = ROuig 1 (7)
Lif2 = R(Ouirc1 + 26') (8)

where ' = angle from the first lift point to the center of gravity, Oy | =
angular distance from the beginning of the girder to the first lift point,
Li 1 = length along the girder to the first lift point, and Lz, =
length along the girder to the second lift point. As a result of these
conditions, the lifting location for a prismatic girder resulting in zero
rigid-body rotation is computed to be Ly /L ~ 0.211. This
solution was confirmed from finite-element parametric studies using
a 3D model (Stith 2010).

Fig. 6. Schematic of lift locations to prevent girder rotation
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Cross-Sectional Twist

Unlike rigid-body rotation, which depends only on the girder and
lifting geometry, cross-sectional twist is a function of both the
girder torsional stiffness and the torsion distribution that is effec-
tively applied by the girder’s self-weight. Accounting for these
effects presents two challenges when approaching the problem: (1)
the I-girder shape is an open section that relies on both St. Venant
and warping torsional stiffness, and (2) the applied torque is
nonuniform along the length, for which an exact solution is not
available. To overcome these challenges, a numerical approxi-
mation of the cross-sectional twist was proposed and adopted in
this research. The closed-form solution of the rigid-body rotation
can be readily computed with the procedure given in the preceding
section. However, the numerical solution of rigid-body rotation
within a 3D finite-element analysis, which is a necessary step in the
overall process of capturing critical response phenomena such as
warping, is computationally demanding. The demand is due to the
iterative solution involving geometric nonlinearity in which
convergence is ensured by the inclusion of a small restraint. Rather
than carrying out such a finite-element analysis, an alternative
approach is to calculate the rigid-body rotation analytically and
then develop an algorithm that computes the resulting nodal
locations in the deformed position. Once this deformed position is
computed, a numerical solution procedure is used to determine
twisting deformations. The numerical procedure uses a two-node,
one-dimensional, C! continuous finite-element formulation for
an open cross section with an applied nonuniform torsion derived
by Mohareb and Nowzartash (2003) to linearly approximate the
twist and the rate of change of twist. A displacement-based C'
continuous finite element has the property that the primary variable
(i.e., rotations) and the derivative of the primary variable are con-
tinuous at the boundary between two elements. The element
employed in this research captured the necessary behavior as a one-
dimensional linear element, allowing the girder’s arc length to be
modeled as a straight line. The general finite-element equation for
this element is given by Eq. (9)

[Kel{e} = {Tere} + {T} ©)

where [K,] = torsional stiffness matrix, {¢} = nodal rotations,
{T} = nodal torsional moments, and the fixed-end torques {7,zg}
are computed from Eq. (10)

{Tere} = J {Ni(z) }1(z)dz (10)

The formulation given by Mohareb and Nowzartash (2003)
provides the torsional stiffness matrix [K,] and the shape functions
{Ni(z)}, but it requires the applied distributed twisting moment #(z)
to be defined. This term can be computed as the derivative of the
function that describes the variation in torsion evaluated at the in-
tegration point of an element. Previously, Stith et al. (2009) derived
the torsion diagram equations (i.e., the variation in torsion) for
a prismatic girder. However, many steel I-girders are nonprismatic,
and additional equations for a nonprismatic girder were developed to
represent this case.

Loads that do not pass through the shear center of a girder cross-
section produce a torque on the member. It is therefore necessary to
determine the eccentricity of the load from the cross-sectional shear
center to determine the torque at a particular location along the
girder. To derive the torsion diagram, an approach similar to the
calculation of the bending-moment diagram is used. Equilibrium

between the internal and external forces is established by taking
a section through the girder. The external loads include the girder
self-weight, the weight of the cross frames, and the lifting-clamp
reactions. Unlike the moment diagram on a straight girder, the tor-
sion diagram is computed on a two-dimensional (2D) girder curved
in plan and thus is slightly more complicated. It is also important to
note that the torsion diagram must be calculated on the rigidly ro-
tated girder so that the resulting diagram produces zero net torque.
Additionally, after the rigid-body rotation takes place, the center of
gravity and shear center for any given cross section generally will
not align vertically and thus will move perpendicularly to the line of
support in plan, as shown in Figs. 7 and 8.

With the rigid-body rotation angle 6.q and the eccentricity
between the center of gravity of the girder and the line of support e
known, the eccentricity of the shear center at cross section j and the
center of gravity for a given cross section i is given by Eqgs. (11)
and (12)

H 4+ tr + HS.C.j)
H+ 1 + HC.G.)

es,C.j = eé (11)

_ (H +tr + Hcg.)
€CGi = € —
(H + fr + HC.G.)

(12)

eyoj—i = €s.Cj ~ €C.G.i (13)

where Hs ¢ ; = height of the shear center (SC) at cross section j and is
equal to Hc g. + Yo;, es.c; = eccentricity of the shear center at cross
section j to the line of support, ec g; = eccentricity of the center of
gravity at cross section i to the line of support, and eyp;—; = ec-
centricity of the shear center at cross section j to center of gravity at
cross section i.

Fig. 7 shows the centerline of the prerotated girder as the arc of
girder support. The arc of girder shear center is the rotated position
of the girder’s shear center in plan view owing to the rigid-body
rotation of the girder. The equations necessary to calculate the torque
applied to the specified cross section x by the lift clamps are given
subsequently. The torque effectively applied by both lifting clamps
1 and 2 are calculated the same way, but only the lifting clamp
1 equations are shown subsequently for conciseness. Rj;s | is the
reaction force at lifting clamp 1 calculated from an equilibrium
analysis of this statically determinate system, and Ty ; is the

Arc of Girder
Support

Arc of Girder
Shear Center

Fig. 7. Plan view schematic of lifted nonprismatic girder torque owing
to Lift Clamp 1 at a point 6
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Fig. 8. Plan view schematic of lifted nonprismatic girder torque owing to self-weight of (a) Cross Section 1 and (b) Cross Section 2 at a point 6,

resulting interior torque at x due to lifting clamp 1. Eqgs. (14)-(21)
provide the derivation necessary to calculate Ty | given in Eq. (22),
which is used in the subsequent analysis of the girder cross-sectional
twist. All other variables used in Eqgs. (14)—(21) are shown in Fig. 7

0, = % (14)

OLifi 1 + 6L
9Lift/2 _ ULift 1 5 Lift 2 (15)
01 = Opify2 — Oife 1 (16)
01 = T — 011 (17)
¢ = \/R2 + eécj—ZR X escj X cos(OxL1) (18)
6, — sin”! [R X s1n(6,.,L1)] (19)

-
0 = Ox + (921 - 9Lift/2) (20)
R «

= |— 0 21
et [COS(GZl) - c] cos (0141) @)
Tui1 = Ruir1 ¥ e (22)

The next step is to calculate the resultant force effectively applied
by the self-weight of the girder to the location of the cut x. The weight
of the girder sections W,; is calculated based on the dimensions of the
cross section and the material density. The location of the centroid
(5,(,-, D,;) of each section can be calculated using Egs. (1)—(3). With
this information, Egs. (23)—(28) can be used to calculate the torque
from the girder self-weight for cross section j at the cut located on
cross section i (T3;). The results from Egs. (22) and (29) are combined
to give the torsion function shown in Eq. (30). Fig. 8 provides
schematic diagrams of the method to calculate the eccentricities (1)
between the girder’s first cross section center of gravity and the
tangent line at x and (2) between the girder’s second cross section
center of gravity and the tangent line at x. As a result of rigid-body
rotation, both the center of gravity and the shear center will translate
in plan as shown in Fig. 8. Nonprismatic girders require the

486 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / APRIL 2013

Orxi = Opinj2 — bxi (23)
Orrxi = T — OLyi (24)
c = D)Zd + e%/Oj*i —2D,; X eyoj—i X COS(Bﬂ—in) (25)
0/ = sin”! [D—Xi X sm(B,Tin)] (26)
p

O = Ox + (Glm - 0Lift/2) (27)

Dy
e = [m — c] cos(Oin) (28)
Ty = Wy X en (29)
=Tx) = > T — Tuife 1 — TLife 2 (30)

summation over all cross sections along the girder to the cut at x. All
other variables used in Eqgs. (23)—(28) are shown in Fig. 8.

Several graphic examples of torsion diagrams are provided in
Stith, et al. (2009). The derivative of the torsional moment function
at the integration points was computed using a linear five-point
central-difference scheme because its quadratic approximation of
the derivative provided increased accuracy over lower-order nu-
merical procedures.

UT Lift Analysis Tool

The culmination of the research on the lifting of curved I-girders
resulted in the development of the UT Lift analysis tool (an exam-
ple analysis using this software is provided in the Appendix). The
program is a spreadsheet-based tool that allows the user to input the
girder properties such as number of cross sections, radius of cur-
vature, cross-sectional properties, and cross-frame information. The
program calculates the center of gravity and the ideal lift-point
locations that result in no rigid-body rotation. The program also
allows the user to specify the lift points based on erection hardware
such as the specific crane spreader bar length. Based on the user-
defined lift points, the program calculates the rigid-body rotation
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using the analytical solution described previously. Girder twist
resulting from the applied torque is also evaluated using a macro
within the spreadsheet software that employs the Mohareb and
Nowzartash (2003) element formulation described in the preceding
section.

Stresses and Buckling Moments

The strong- and weak-axis bending displacements are modeled using
a two-node beam element that neglects axial and torsional compo-
nents. This formulation yields a two-node, four-degree-of-freedom
element that is combined and uncoupled from the open-section tor-
sion element, producing an element with a total of six degrees of
freedom (displacement and rotation about the strong and weak axes as
well as twist and change of twist about the longitudinal axis of the
girder). The lift points apply a point torque, and it is desirable to report
the deformations at the midpoint between lifting clamps. Thus the
girder is divided into four segments: a segment from the beginning of
the girder to the first lift point, two segments between the lift points,
and a segment from the second lift point to the end of the girder.
There are multiple elements per segment, but subdividing the
girder into segments ensures that, in general, nodes are located at
critical girder locations. The only strong- and weak-axis bending
loads are due to the girder and cross-frame weights decomposed
into components based on the calculated rigid-body rotation. Once
the weak-axis displacements are calculated, a correction is made
to the girder’s center of gravity, and a new rigid-body rotation is
calculated. However, the process is not iterative because the cross-
sectional twist approximation is linear.

The output produced by UT Lift includes the cross-sectional
stresses at the top and bottom flange tips, the total rotation at the
ends and midway between the lift points, and an estimation of the
critical buckling load as given by Farris (2008). The critical buckling
load is relatively accurate for straight girders and mildly curved
segments, but the load represents an upper-bound solution for
moderately to highly curved segments. For typical steel bridge
geometries, mild curvature corresponds to a radius of curvature
larger than approximately 548.6 m (1,800 ft), whereas moderate
curvature begins around 365.8 m (1,200 ft). The accuracy of the
critical buckling load solution decreases as the radius of curvature is
decreased. The stress output combines the strong-axis bending, the
weak-axis bending, and the warping normal components of stress.
The rotational output is the sum of the rigid-body rotation and the
cross-sectional twist. In addition, UT Lift provides three graphic
outputs: (1) the out-of-plane displacements of the top and bottom
flanges relative to the girder’s original vertical position as a function
of the length along the girder, (2) the total rotational deformations of
the girder along its length, and (3) the torsion diagram of the girder in
the lifted state. The torsion diagram accounts for the effects of cross
frames on the girder torque. The position of the cross frames can
have a significant effect on the rigid-body rotation, and an engineer
may consider positioning them in such a way as to minimize the
rigid-body rotation, which UT Lift allows a user to do efficiently. For
example, an engineer may decide to include only cross frames on the
inside arc of the curved girder to reduce the rigid-body motion.

UT Lift Verification

The UT Lift program was verified with 3D nonlinear finite-element
analyses conducted using ANSYS. The graphs presented in Figs. 9—-12
compare the centerline rotation from the ANSYS analysis with the
predicted results from UT Lift. Comparisons for both prismatic and
nonprismatic girders were made. Figs. 9 and 10 show results for
girders with a top flange width-to-depth ratio equal to the TxDOT
preferred practice minimum (by/D = 0.33). The ANSYS-calculated
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Fig. 9. UT Lift verification of prismatic girder
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Fig. 10. UT Lift verification of nonprismatic girder
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Fig. 11. UT Lift verification of prismatic girder

rotation is matched almost perfectly by UT Lift. Figs. 11 and 12
provide results for girders with a smaller top flange width-to-depth
ratio equal to the AASHTO minimum (b;/D = 0.167). The results
computed using UT Lift compare well with the ANSYS results, al-
though there is some discrepancy in the results for extremely flexible
girders where second-order effects can become significant. It was
noted in all analyses that the UT Lift solution closely matched the
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response computed using the ANSYS models, with larger errors
observed for girders with large initial rigid-body rotations and/or
small flange widths. Because the large rotations can render girder
segments extremely difficult to splice together, the discrepancies for
the cases with very large deformations are not considered to be
important because most erectors will develop a different lifting
scenario once they are aware of the behavior. A rotation of 1.5° is
recommended by the researchers on this study based on feedback
from erection and construction personnel (Farris 2008).

Conclusions and Summary

A detailed 3D finite-element model of a girder lift test was created
using ANSYS, and the collected test data allowed the finite-element
model to be verified. Once the computer model was verified,
a parametric study was undertaken, and two guidelines for ensur-
ing safety during girder erection were developed based on strength
and serviceability limit states. The strength limits should include
buckling considerations as well as stress calculations that account for
strong-axis bending, weak-axis bending, and warping stresses. For
strength limit states, a limiting girder stress should be selected that
reflects the effects of residual stresses in the girders as well as the
construction-induced stresses during girder erection. In the study
reported in this paper, a limit of 50% of the yield stress F, was
considered reasonable based on the potential residual stresses that
can exist in a given section. The serviceability limit during erection
should consider end rotation at girder splices, and a value of 1.5° is
recommended based on results from a national survey of contractors,
inspectors, and engineers who specialize in curved steel I-girder
systems. The serviceability limit state should account for both the
rigid-body rotation and the cross-sectional twist resulting from the
torsional self-weight load. The rigid-body rotation depends only on
the girder geometry and is not a function of the torsional stiffness. A
derivation of a method to numerically determine the torque at any
point along a circularly curved nonprismatic girder was derived as
a necessary parameter for analyzing the lifting behavior of curved
I-girders. The required strength and serviceability limit-state checks
can be made quickly and accurately using the UT Lift spreadsheet
analysis tool. The development of this tool, along with its underlying
assumptions, is described in detail in this paper. UT Lift has been
verified as accurate for cases where the total rotation is limited to
reasonable values. UT Lift’s linear approximation of the cross-
sectional twist deviates from the actual behavior for very flexible
girders or girders with large initial rigid-body rotations, but the
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Fig. 12. UT Lift verification of nonprismatic girder

derived method and tool still provide reasonable estimates of girder
deformations even for girder geometries at the AASHTO mini-
mum limits. The University of Texas and TxDOT have made the
spreadsheet UT Lift available to the public for no charge through the
Ferguson Structural Engineering Laboratory website. With this tool,
bridge or erection engineers can quickly determine whether girder
performance limit states will be satisfied for a given lifting sequence
and adjust the lifting scenario as necessary. Such information is
crucial for the safe construction of curved I-girders.

Appendix. UT Lift Example

Anexample of the capabilities of UT Lift is given for the case of a two-
span bridge with skewed supports and varying cross-frame locations.
The girder under consideration is positioned over the middle pier, and
it has three cross sections and 13 cross-frame locations. Fig. 13 shows
a plan view of the bridge, and Fig. 14 gives an elevation view of the
girder with a radius of curvature of 365.8 m (1,200 ft).

UT Lift calculates that if the first lift-point location is 9.586 m
(31.45 ft) from the beginning and a 23.497-m (77.09-ft) spreader bar
is used, the girder will not have any rigid-body rotation. However,
because of practical constraints, it would be reasonable to assume
that a spreader bar of 22.86 m (75 ft) is used for the lifting. The
program then calculates an initial rigid-body rotation for such
aspreader bar to be 0.33°. The spreadsheet macro then can be run and
the total rotation calculated. The maximum predicted rotation of
0.77¢1s given at the beginning of the girder, and a maximum stress of
9.86 MPa is given at the first lift point. While the predicted buckling
capacity is overpredicted for curved girders using an eigenvalue
analysis, it is instructive to note that the predicted buckling capacity
is 4.98 MN-m (3,673 k-ft), and the maximum factored moment
is 427.1 kN-m (315 k-ft), which is only one-tenth the predicted
capacity, thereby indicating a relatively stable girder. UT Lift pro-
vides three graphic outputs: (1) the out-of-plane displacements of
the top and bottom flanges relative to the girder’s original vertical
position as a function of the length along the girder, (2) the total
rotational deformations of the girder along its length, and (3) the
torsion diagram of the girder in the lifted state. Figs. 15, 16, and 17,

Plan View of 2

_ Span Curved

" Bridged with
Skewed Supports

Fig. 13. Plan view of a two-span bridge with skewed supports
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Fig. 14. Elevation view of a girder
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Out-of-Plane Displacements are those of the authors and do not necessarily reflect those of

1 the sponsors.

£08

2 Notation

c 0.6

g

S04 The following symbols are used in this paper:

2 a = 0 if cross frames are only on both sides of the

a 0.2 . . .
girder; 1 if cross frames are only on the outside

of the curved girder;

50 100 150 D = radial distance to center of gravity;
Length along Girder (ft) e = eccentricity between center of gravity and the
=e=Top of Girder =é=Bottom of Girder line of support;

ecc. = eccentricity of the center of gravity at cross
section i to the line of support;

es.c,; = eccentricity of the shear center at cross section
Jj to the line of support;

Fig. 15. Out-of-plane displacements of the girder

. . eyoj—i = eccentricity of the shear center at cross section
Girder Rotation J to center of gravity at cross section i
0.8 H = height of axis of rotation above the top
= 07 N\ / flange;
g 06 \ / Hc. = average girder center-of-gravity location
%" 05 below the top flange;
::; 0.4 \ / i = number of cross sections;
g g'i \ / Jj = number of cross frames;
e [K,] = exact torsional stiffness matrix;
0.1 ~_ L =length along girder to center of gravity;
0 Liis 1 = length along girder to lift point 1;
0 50 100 150 Liis » = length along girder to lift point 2;
Length along Girder (ft) {Ni(z)} = torsional shape functions;
R =radius of curvature;
Fig. 16. Total rotations of the girder s = cross-frame width or spacing of the girders
(—1 if cross frames are only on the inside of
the curve);
Torsion Diagram {T} =nodal twisting moment;
40 {T.re} = exact fixed end twisting moment;
30 /_’L t7 = thickness of the top flange;
£ 2 JA‘V AN t(z) = applied distributed twisting moment;
& 10 - W; = weight per unit length of cross section i;
% 0 [L~ AN W, = weight of cross frame j;
g -10 a = 01if cross frames are only on both sides of the
2 20 girder; 1 if cross frames are only on the outside
-30 ] of the curved girder;
-40 6’ = angular distance from lift points to center of
0 50 100 150 gravity;

0 = angular distance to center of gravity;
0; = internal angle from the beginning of the girder
Fig. 17. Torsion diagram of the girder to the end of section i;
O 1 = angular distance to lift point 1;

Ox; = internal angle from the beginning of the girder

to cross frame j; and
6o =0; and
{¢} = nodal rotations.

Length along Girder (ft)

respectively, are the three graphic outputs for this girder. The sharp
changes in the torque at locations along the length represent regions
where a cross frame is positioned.
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